- assert - 断言
- async_hooks - 异步钩子
- Buffer - 缓冲器
- child_process - 子进程
- cluster - 集群
- console - 控制台
- crypto - 加密
- debugger - 调试器
- dgram - 数据报
- dns - 域名服务器
- domain - 域
- Error - 错误
- events - 事件触发器
- fs - 文件系统
- global - 全局变量
- http - HTTP
- http2 - HTTP/2
- https - HTTPS
- inspector - 检查器
- module - 模块
- net - 网络
- os - 操作系统
- path - 路径
- perf_hooks - 性能钩子
- process - 进程
- punycode - 域名代码
- querystring - 查询字符串
- readline - 逐行读取
- repl - 交互式解释器
- stream - 流
- string_decoder - 字符串解码器
- timer - 定时器
- tls - 安全传输层
- trace_events - 跟踪事件
- tty - 终端
- url - URL
- util - 实用工具
- v8 - V8引擎
- vm - 虚拟机
- wasi - WASI
- worker_threads - 工作线程
- zlib - 压缩
目录
- crypto(加密)
- 检测是否支持 crypto
- Certificate 类
- Cipher 类
- Decipher 类
- DiffieHellman 类
diffieHellman.computeSecret(otherPublicKey[, inputEncoding][, outputEncoding])
diffieHellman.generateKeys([encoding])
diffieHellman.getGenerator([encoding])
diffieHellman.getPrime([encoding])
diffieHellman.getPrivateKey([encoding])
diffieHellman.getPublicKey([encoding])
diffieHellman.setPrivateKey(privateKey[, encoding])
diffieHellman.setPublicKey(publicKey[, encoding])
diffieHellman.verifyError
- DiffieHellmanGroup 类
- ECDH 类
- ECDH.convertKey(key, curve[, inputEncoding[, outputEncoding[, format]]])
ecdh.computeSecret(otherPublicKey[, inputEncoding][, outputEncoding])
ecdh.generateKeys([encoding[, format]])
ecdh.getPrivateKey([encoding])
ecdh.getPublicKey([encoding][, format])
ecdh.setPrivateKey(privateKey[, encoding])
ecdh.setPublicKey(publicKey[, encoding])
- Hash 类
- Hmac 类
- KeyObject 类
- Sign 类
- Verify 类
- crypto 模块的方法和属性
crypto.constants
crypto.DEFAULT_ENCODING
crypto.fips
crypto.createCipher(algorithm, password[, options])
crypto.createCipheriv(algorithm, key, iv[, options])
crypto.createDecipher(algorithm, password[, options])
crypto.createDecipheriv(algorithm, key, iv[, options])
crypto.createDiffieHellman(prime[, primeEncoding][, generator][, generatorEncoding])
crypto.createDiffieHellman(primeLength[, generator])
crypto.createDiffieHellmanGroup(name)
crypto.createECDH(curveName)
crypto.createHash(algorithm[, options])
crypto.createHmac(algorithm, key[, options])
crypto.createPrivateKey(key)
crypto.createPublicKey(key)
crypto.createSecretKey(key)
crypto.createSign(algorithm[, options])
crypto.createVerify(algorithm[, options])
crypto.diffieHellman(options)
crypto.generateKeyPair(type, options, callback)
crypto.generateKeyPairSync(type, options)
crypto.getCiphers()
crypto.getCurves()
crypto.getDiffieHellman(groupName)
crypto.getFips()
crypto.getHashes()
crypto.pbkdf2(password, salt, iterations, keylen, digest, callback)
crypto.pbkdf2Sync(password, salt, iterations, keylen, digest)
crypto.privateDecrypt(privateKey, buffer)
crypto.privateEncrypt(privateKey, buffer)
crypto.publicDecrypt(key, buffer)
crypto.publicEncrypt(key, buffer)
crypto.randomBytes(size[, callback])
crypto.randomFillSync(buffer[, offset][, size])
crypto.randomFill(buffer[, offset][, size], callback)
crypto.randomInt([min, ]max[, callback])
crypto.scrypt(password, salt, keylen[, options], callback)
crypto.scryptSync(password, salt, keylen[, options])
crypto.setEngine(engine[, flags])
crypto.setFips(bool)
crypto.sign(algorithm, data, key)
crypto.timingSafeEqual(a, b)
crypto.verify(algorithm, data, key, signature)
- 注意事项
- crypto 常量
crypto(加密)#
源代码: lib/crypto.js
crypto
模块提供了加密功能,包括对 OpenSSL 的哈希、HMAC、加密、解密、签名、以及验证功能的一整套封装。
使用 require('crypto')
来访问该模块。
const crypto = require('crypto');
const secret = 'abcdefg';
const hash = crypto.createHmac('sha256', secret)
.update('I love cupcakes')
.digest('hex');
console.log(hash);
// 打印:
// c0fa1bc00531bd78ef38c628449c5102aeabd49b5dc3a2a516ea6ea959d6658e
检测是否支持 crypto#
可以在不包括支持 crypto
模块的情况下构建 Node.js,这时调用 require('crypto')
将导致抛出异常。
let crypto;
try {
crypto = require('crypto');
} catch (err) {
console.log('不支持 crypto');
}
Certificate 类#
SPKAC 最初是由 Netscape 实现的一种证书签名请求机制, 现在正式成为 HTML5 的 keygen 元素的一部分。
不推荐使用 <keygen>
,因为 HTML 5.2 和新项目不再使用此元素。
crypto
模块提供 Certificate
类用于处理 SPKAC 数据。
最普遍的用法是处理 HTML5 keygen
元素产生的输出。
Node.js 内部使用 [OpenSSL 的 SPKAC 实现 处理。
Certificate.exportChallenge(spkac)
#
spkac
<string> | <Buffer> | <TypedArray> | <DataView>- 返回 <Buffer> 返回
spkac
数据结构的 challenge 部分,spkac
包含一个公钥和一个 challenge。
const { Certificate } = require('crypto');
const spkac = getSpkacSomehow();
const challenge = Certificate.exportChallenge(spkac);
console.log(challenge.toString('utf8'));
// 以 UTF 字符串的形式打印 challenge。
Certificate.exportPublicKey(spkac[, encoding])
#
spkac
<string> | <Buffer> | <TypedArray> | <DataView>encoding
<string> The encoding of thespkac
string.- Returns: <Buffer> The public key component of the
spkac
data structure, which includes a public key and a challenge.
const { Certificate } = require('crypto');
const spkac = getSpkacSomehow();
const publicKey = Certificate.exportPublicKey(spkac);
console.log(publicKey);
// Prints: the public key as <Buffer ...>
Certificate.verifySpkac(spkac)
#
spkac
<Buffer> | <TypedArray> | <DataView>- 返回 <boolean> 如果
spkac
数据结构是有效的返回true
,否则返回false
。
const { Certificate } = require('crypto');
const spkac = getSpkacSomehow();
console.log(Certificate.verifySpkac(Buffer.from(spkac)));
// 打印 true 或 false。
传统的 API#
As a legacy interface, it is possible to create new instances of
the crypto.Certificate
class as illustrated in the examples below.
new crypto.Certificate()
#
Instances of the Certificate
class can be created using the new
keyword
or by calling crypto.Certificate()
as a function:
const crypto = require('crypto');
const cert1 = new crypto.Certificate();
const cert2 = crypto.Certificate();
certificate.exportChallenge(spkac)
#
spkac
<string> | <Buffer> | <TypedArray> | <DataView>- Returns: <Buffer> The challenge component of the
spkac
data structure, which includes a public key and a challenge.
const cert = require('crypto').Certificate();
const spkac = getSpkacSomehow();
const challenge = cert.exportChallenge(spkac);
console.log(challenge.toString('utf8'));
// Prints: the challenge as a UTF8 string
certificate.exportPublicKey(spkac)
#
spkac
<string> | <Buffer> | <TypedArray> | <DataView>- Returns: <Buffer> The public key component of the
spkac
data structure, which includes a public key and a challenge.
const cert = require('crypto').Certificate();
const spkac = getSpkacSomehow();
const publicKey = cert.exportPublicKey(spkac);
console.log(publicKey);
// Prints: the public key as <Buffer ...>
certificate.verifySpkac(spkac)
#
spkac
<Buffer> | <TypedArray> | <DataView>- Returns: <boolean>
true
if the givenspkac
data structure is valid,false
otherwise.
const cert = require('crypto').Certificate();
const spkac = getSpkacSomehow();
console.log(cert.verifySpkac(Buffer.from(spkac)));
// Prints: true or false
Cipher 类#
- 继承自: <stream.Transform>
Cipher
类的实例用于加密数据。
该类可以通过以下两种方式之一使用:
- 作为可读写的流,其中写入未加密的数据以在可读侧生成加密的数据。
- 使用
cipher.update()
和cipher.final()
方法生成加密的数据。
crypto.createCipher()
或 crypto.createCipheriv()
方法用于创建 Cipher
实例。
不能使用 new
关键字直接地创建 Cipher
对象。
示例,使用 Cipher
对象作为流:
const crypto = require('crypto');
const algorithm = 'aes-192-cbc';
const password = '用于生成密钥的密码';
// 密钥长度取决于算法。
// 在此示例中,对于 aes192,它是 24 个字节(192 位)。
// 改为使用异步的 `crypto.scrypt()`。
const key = crypto.scryptSync(password, '盐值', 24);
// 使用 `crypto.randomBytes()` 生成随机的 iv 而不是此处显示的静态的 iv。
const iv = Buffer.alloc(16, 0); // 初始化向量。
const cipher = crypto.createCipheriv(algorithm, key, iv);
let encrypted = '';
cipher.on('readable', () => {
let chunk;
while (null !== (chunk = cipher.read())) {
encrypted += chunk.toString('hex');
}
});
cipher.on('end', () => {
console.log(encrypted);
// 打印: 9d47959b80d428936beef61216ef0b7653b5d23a670e082bd739f6cebcb6038f
});
cipher.write('要加密的数据');
cipher.end();
示例,使用 Cipher
和管道流:
const crypto = require('crypto');
const fs = require('fs');
const algorithm = 'aes-192-cbc';
const password = '用于生成密钥的密码';
// 改为使用异步的 `crypto.scrypt()`。
const key = crypto.scryptSync(password, '盐值', 24);
// 使用 `crypto.randomBytes()` 生成随机的 iv 而不是此处显示的静态的 iv。
const iv = Buffer.alloc(16, 0); // 初始化向量。
const cipher = crypto.createCipheriv(algorithm, key, iv);
const input = fs.createReadStream('要加密的数据.txt');
const output = fs.createWriteStream('加密后的数据.enc');
input.pipe(cipher).pipe(output);
示例,使用 cipher.update()
和 cipher.final()
方法:
const crypto = require('crypto');
const algorithm = 'aes-192-cbc';
const password = '用于生成密钥的密码';
// 改为使用异步的 `crypto.scrypt()`。
const key = crypto.scryptSync(password, '盐值', 24);
// 使用 `crypto.randomBytes()` 生成随机的 iv 而不是此处显示的静态的 iv。
const iv = Buffer.alloc(16, 0); // 初始化向量。
const cipher = crypto.createCipheriv(algorithm, key, iv);
let encrypted = cipher.update('要加密的数据', 'utf8', 'hex');
encrypted += cipher.final('hex');
console.log(encrypted);
// 打印: 9d47959b80d428936beef61216ef0b7653b5d23a670e082bd739f6cebcb6038f
cipher.final([outputEncoding])
#
outputEncoding
<string> 返回值的字符编码。- 返回: <Buffer> | <string> 任何剩余的加密内容。如果指定了
outputEncoding
,则返回一个字符串。如果未提供outputEncoding
,则返回Buffer
。
一旦调用了 cipher.final()
方法,则 Cipher
对象就不能再用于加密数据。
如果试图多次调用 cipher.final()
,则将会导致抛出错误。
cipher.setAAD(buffer[, options])
#
buffer
<Buffer> | <TypedArray> | <DataView>options
<Object>stream.transform
optionsplaintextLength
<number>
- Returns: <Cipher> for method chaining.
When using an authenticated encryption mode (GCM
, CCM
and OCB
are
currently supported), the cipher.setAAD()
method sets the value used for the
additional authenticated data (AAD) input parameter.
The options
argument is optional for GCM
and OCB
. When using CCM
, the
plaintextLength
option must be specified and its value must match the length
of the plaintext in bytes. See CCM mode.
The cipher.setAAD()
method must be called before cipher.update()
.
cipher.getAuthTag()
#
- 返回: <Buffer> 当使用经验证的加密模式时(目前只支持
GCM
、CCM
和OCB
),cipher.getAuthTag()
方法返回一个Buffer
,它包含已从给定数据计算后的认证标签。
cipher.getAuthTag()
方法只能在使用 cipher.final()
方法完全加密后调用。
cipher.setAutoPadding([autoPadding])
#
当使用块加密算法时, Cipher
类会自动添加填充到输入数据中,来适配相应块大小。
可调用 cipher.setAutoPadding(false)
禁用默认填充。
当 autoPadding
是 false
时,整个输入数据的长度必须是 cipher 块大小的倍数,否则 cipher.final()
将抛出一个错误。
禁用自动填充对于非标准填充是有用的,例如使用 0x0
代替 PKCS 填充。
cipher.setAutoPadding()
必须在 cipher.final()
之前被调用。
cipher.update(data[, inputEncoding][, outputEncoding])
#
data
<string> | <Buffer> | <TypedArray> | <DataView>inputEncoding
<string> 数据的字符编码。outputEncoding
<string> 返回值的字符编码。- 返回: <Buffer> | <string>
使用 data
更新加密。
如果指定了 inputEncoding
参数,则 data
参数是使用了指定的字符编码的字符串。
如果未指定 inputEncoding
参数,则 data
必须是一个 Buffer
、 TypedArray
或 DataView
。
如果 data
是一个 Buffer
、 TypedArray
或 DataView
,则 inputEncoding
会被忽略。
outputEncoding
指定了加密的数据的输出格式。
如果指定了 outputEncoding
,则返回使用了指定的字符编码的字符串。
如果未提供 outputEncoding
,则返回 Buffer
。
可以使用新数据多次调用 cipher.update()
方法,直到 cipher.final()
被调用。
在 cipher.final()
之后调用 cipher.update()
将会导致抛出错误。
Decipher 类#
- 继承自: <stream.Transform>
Decipher
类的实例用于解密数据。
该类可以通过以下两种方式之一使用:
- 作为可读写的流,其中写入加密的数据以在可读侧生成未加密的数据。
- 使用
decipher.update()
和decipher.final()
方法生成未加密的数据。
crypto.createDecipher()
或 crypto.createDecipheriv()
方法用于创建 Decipher
实例。
不能使用 new
关键字直接地创建 Decipher
对象。
示例,使用 Decipher
对象作为流:
const crypto = require('crypto');
const algorithm = 'aes-192-cbc';
const password = '用于生成密钥的密码';
// 密钥长度取决于算法。
// 在此示例中,对于 aes192,它是 24 个字节(192 位)。
// 改为使用异步的 `crypto.scrypt()`。
const key = crypto.scryptSync(password, '盐值', 24);
// IV 通常与密文一起传递。
const iv = Buffer.alloc(16, 0); // 初始化向量。
const decipher = crypto.createDecipheriv(algorithm, key, iv);
let decrypted = '';
decipher.on('readable', () => {
while (null !== (chunk = decipher.read())) {
decrypted += chunk.toString('utf8');
}
});
decipher.on('end', () => {
console.log(decrypted);
// 打印: 要加密的数据
});
// 使用相同的算法、密钥和 iv 进行加密。
const encrypted =
'9d47959b80d428936beef61216ef0b7653b5d23a670e082bd739f6cebcb6038f';
decipher.write(encrypted, 'hex');
decipher.end();
示例,使用 Decipher
和管道流:
const crypto = require('crypto');
const fs = require('fs');
const algorithm = 'aes-192-cbc';
const password = '用于生成密钥的密码';
// 改为使用异步的 `crypto.scrypt()`。
const key = crypto.scryptSync(password, '盐值', 24);
// IV 通常与密文一起传递。
const iv = Buffer.alloc(16, 0); // 初始化向量。
const decipher = crypto.createDecipheriv(algorithm, key, iv);
const input = fs.createReadStream('要解密的数据.enc');
const output = fs.createWriteStream('解密后的数据.js');
input.pipe(decipher).pipe(output);
示例,使用 decipher.update()
和 decipher.final()
方法:
const crypto = require('crypto');
const algorithm = 'aes-192-cbc';
const password = '用于生成密钥的密码';
// 改为使用异步的 `crypto.scrypt()`。
const key = crypto.scryptSync(password, '盐值', 24);
// IV 通常与密文一起传递。
const iv = Buffer.alloc(16, 0); // 初始化向量。
const decipher = crypto.createDecipheriv(algorithm, key, iv);
// 使用相同的算法、密钥和 iv 进行加密。
const encrypted =
'9d47959b80d428936beef61216ef0b7653b5d23a670e082bd739f6cebcb6038f';
let decrypted = decipher.update(encrypted, 'hex', 'utf8');
decrypted += decipher.final('utf8');
console.log(decrypted);
// 打印: 要加密的数据
decipher.final([outputEncoding])
#
outputEncoding
<string> 返回值的字符编码。- 返回: <Buffer> | <string> 任何剩余的解密内容。如果指定了
outputEncoding
,则返回一个字符串。如果未提供outputEncoding
,则返回Buffer
。
一旦调用了 decipher.final()
方法,则 Decipher
对象就不能再用于解密数据。
如果试图多次调用 decipher.final()
,则将会导致抛出错误。
decipher.setAAD(buffer[, options])
#
buffer
<Buffer> | <TypedArray> | <DataView>options
<Object>stream.transform
optionsplaintextLength
<number>
- Returns: <Decipher> for method chaining.
When using an authenticated encryption mode (GCM
, CCM
and OCB
are
currently supported), the decipher.setAAD()
method sets the value used for the
additional authenticated data (AAD) input parameter.
The options
argument is optional for GCM
. When using CCM
, the
plaintextLength
option must be specified and its value must match the length
of the ciphertext in bytes. See CCM mode.
The decipher.setAAD()
method must be called before decipher.update()
.
decipher.setAuthTag(buffer)
#
buffer
<Buffer> | <TypedArray> | <DataView>- Returns: <Decipher> for method chaining.
When using an authenticated encryption mode (GCM
, CCM
and OCB
are
currently supported), the decipher.setAuthTag()
method is used to pass in the
received authentication tag. If no tag is provided, or if the cipher text
has been tampered with, decipher.final()
will throw, indicating that the
cipher text should be discarded due to failed authentication. If the tag length
is invalid according to NIST SP 800-38D or does not match the value of the
authTagLength
option, decipher.setAuthTag()
will throw an error.
The decipher.setAuthTag()
method must be called before decipher.update()
for CCM
mode or before decipher.final()
for GCM
and OCB
modes.
decipher.setAuthTag()
can only be called once.
decipher.setAutoPadding([autoPadding])
#
autoPadding
<boolean> Default:true
- Returns: <Decipher> for method chaining.
When data has been encrypted without standard block padding, calling
decipher.setAutoPadding(false)
will disable automatic padding to prevent
decipher.final()
from checking for and removing padding.
Turning auto padding off will only work if the input data's length is a multiple of the ciphers block size.
The decipher.setAutoPadding()
method must be called before
decipher.final()
.
decipher.update(data[, inputEncoding][, outputEncoding])
#
data
<string> | <Buffer> | <TypedArray> | <DataView>inputEncoding
<string> 数据的字符编码。outputEncoding
<string> 返回值的字符编码。- 返回: <Buffer> | <string>
使用 data
更新解密。
如果指定了 inputEncoding
参数,则 data
参数是使用了指定的字符编码的字符串。
如果未指定 inputEncoding
参数,则 data
必须是一个 Buffer
、 TypedArray
或 DataView
。
如果 data
是一个 Buffer
、 TypedArray
或 DataView
,则 inputEncoding
会被忽略。
outputEncoding
指定了解密的数据的输出格式。
如果指定了 outputEncoding
,则返回使用了指定的字符编码的字符串。
如果未提供 outputEncoding
,则返回 Buffer
。
可以使用新数据多次调用 decipher.update()
方法,直到 decipher.final()
被调用。
在 decipher.final()
之后调用 decipher.update()
将会导致抛出错误。
DiffieHellman 类#
DiffieHellman
类是一个用来创建 Diffie-Hellman 键交换的工具。
DiffieHellman
类的实例可以使用 crypto.createDiffieHellman()
方法。
const crypto = require('crypto');
const assert = require('assert');
// 生成 Alice 的密钥。
const alice = crypto.createDiffieHellman(2048);
const aliceKey = alice.generateKeys();
// 生成 Bob 的密钥。
const bob = crypto.createDiffieHellman(alice.getPrime(), alice.getGenerator());
const bobKey = bob.generateKeys();
// 交换并生成密钥。
const aliceSecret = alice.computeSecret(bobKey);
const bobSecret = bob.computeSecret(aliceKey);
// 完成。
assert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex'));
diffieHellman.computeSecret(otherPublicKey[, inputEncoding][, outputEncoding])
#
otherPublicKey
<string> | <Buffer> | <TypedArray> | <DataView>inputEncoding
<string> The encoding of anotherPublicKey
string.outputEncoding
<string> The encoding of the return value.- Returns: <Buffer> | <string>
Computes the shared secret using otherPublicKey
as the other
party's public key and returns the computed shared secret. The supplied
key is interpreted using the specified inputEncoding
, and secret is
encoded using specified outputEncoding
.
If the inputEncoding
is not
provided, otherPublicKey
is expected to be a Buffer
,
TypedArray
, or DataView
.
If outputEncoding
is given a string is returned; otherwise, a
Buffer
is returned.
diffieHellman.generateKeys([encoding])
#
Generates private and public Diffie-Hellman key values, and returns
the public key in the specified encoding
. This key should be
transferred to the other party.
If encoding
is provided a string is returned; otherwise a
Buffer
is returned.
diffieHellman.getGenerator([encoding])
#
Returns the Diffie-Hellman generator in the specified encoding
.
If encoding
is provided a string is
returned; otherwise a Buffer
is returned.
diffieHellman.getPrime([encoding])
#
Returns the Diffie-Hellman prime in the specified encoding
.
If encoding
is provided a string is
returned; otherwise a Buffer
is returned.
diffieHellman.getPrivateKey([encoding])
#
Returns the Diffie-Hellman private key in the specified encoding
.
If encoding
is provided a
string is returned; otherwise a Buffer
is returned.
diffieHellman.getPublicKey([encoding])
#
Returns the Diffie-Hellman public key in the specified encoding
.
If encoding
is provided a
string is returned; otherwise a Buffer
is returned.
diffieHellman.setPrivateKey(privateKey[, encoding])
#
privateKey
<string> | <Buffer> | <TypedArray> | <DataView>encoding
<string> The encoding of theprivateKey
string.
Sets the Diffie-Hellman private key. If the encoding
argument is provided,
privateKey
is expected
to be a string. If no encoding
is provided, privateKey
is expected
to be a Buffer
, TypedArray
, or DataView
.
diffieHellman.setPublicKey(publicKey[, encoding])
#
publicKey
<string> | <Buffer> | <TypedArray> | <DataView>encoding
<string> The encoding of thepublicKey
string.
Sets the Diffie-Hellman public key. If the encoding
argument is provided,
publicKey
is expected
to be a string. If no encoding
is provided, publicKey
is expected
to be a Buffer
, TypedArray
, or DataView
.
diffieHellman.verifyError
#
A bit field containing any warnings and/or errors resulting from a check
performed during initialization of the DiffieHellman
object.
The following values are valid for this property (as defined in constants
module):
DH_CHECK_P_NOT_SAFE_PRIME
DH_CHECK_P_NOT_PRIME
DH_UNABLE_TO_CHECK_GENERATOR
DH_NOT_SUITABLE_GENERATOR
DiffieHellmanGroup 类#
The DiffieHellmanGroup
class takes a well-known modp group as its argument but
otherwise works the same as DiffieHellman
.
const name = 'modp1';
const dh = crypto.createDiffieHellmanGroup(name);
name
is taken from RFC 2412 (modp1 and 2) and RFC 3526:
$ perl -ne 'print "$1\n" if /"(modp\d+)"/' src/node_crypto_groups.h
modp1 # 768 bits
modp2 # 1024 bits
modp5 # 1536 bits
modp14 # 2048 bits
modp15 # etc.
modp16
modp17
modp18
ECDH 类#
ECDH
类是创建椭圆曲线 Elliptic Curve Diffie-Hellman(ECDH)键交换的实用工具。
ECDH
类的实例可以使用 crypto.createECDH()
方法。
const crypto = require('crypto');
const assert = require('assert');
// 生成 Alice 的密钥。
const alice = crypto.createECDH('secp521r1');
const aliceKey = alice.generateKeys();
// 生成 Bob 的密钥。
const bob = crypto.createECDH('secp521r1');
const bobKey = bob.generateKeys();
// 交换并生成密钥。
const aliceSecret = alice.computeSecret(bobKey);
const bobSecret = bob.computeSecret(aliceKey);
assert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex'));
// 完成
ECDH.convertKey(key, curve[, inputEncoding[, outputEncoding[, format]]])#
key
<string> | <Buffer> | <TypedArray> | <DataView>curve
<string>inputEncoding
<string> The encoding of thekey
string.outputEncoding
<string> The encoding of the return value.format
<string> Default:'uncompressed'
- Returns: <Buffer> | <string>
Converts the EC Diffie-Hellman public key specified by key
and curve
to the
format specified by format
. The format
argument specifies point encoding
and can be 'compressed'
, 'uncompressed'
or 'hybrid'
. The supplied key is
interpreted using the specified inputEncoding
, and the returned key is encoded
using the specified outputEncoding
.
Use crypto.getCurves()
to obtain a list of available curve names.
On recent OpenSSL releases, openssl ecparam -list_curves
will also display
the name and description of each available elliptic curve.
If format
is not specified the point will be returned in 'uncompressed'
format.
If the inputEncoding
is not provided, key
is expected to be a Buffer
,
TypedArray
, or DataView
.
Example (uncompressing a key):
const { createECDH, ECDH } = require('crypto');
const ecdh = createECDH('secp256k1');
ecdh.generateKeys();
const compressedKey = ecdh.getPublicKey('hex', 'compressed');
const uncompressedKey = ECDH.convertKey(compressedKey,
'secp256k1',
'hex',
'hex',
'uncompressed');
// The converted key and the uncompressed public key should be the same
console.log(uncompressedKey === ecdh.getPublicKey('hex'));
ecdh.computeSecret(otherPublicKey[, inputEncoding][, outputEncoding])
#
otherPublicKey
<string> | <Buffer> | <TypedArray> | <DataView>inputEncoding
<string> The encoding of theotherPublicKey
string.outputEncoding
<string> The encoding of the return value.- Returns: <Buffer> | <string>
Computes the shared secret using otherPublicKey
as the other
party's public key and returns the computed shared secret. The supplied
key is interpreted using specified inputEncoding
, and the returned secret
is encoded using the specified outputEncoding
.
If the inputEncoding
is not
provided, otherPublicKey
is expected to be a Buffer
, TypedArray
, or
DataView
.
If outputEncoding
is given a string will be returned; otherwise a
Buffer
is returned.
ecdh.computeSecret
will throw an
ERR_CRYPTO_ECDH_INVALID_PUBLIC_KEY
error when otherPublicKey
lies outside of the elliptic curve. Since otherPublicKey
is
usually supplied from a remote user over an insecure network,
be sure to handle this exception accordingly.
ecdh.generateKeys([encoding[, format]])
#
encoding
<string> The encoding of the return value.format
<string> Default:'uncompressed'
- Returns: <Buffer> | <string>
Generates private and public EC Diffie-Hellman key values, and returns
the public key in the specified format
and encoding
. This key should be
transferred to the other party.
The format
argument specifies point encoding and can be 'compressed'
or
'uncompressed'
. If format
is not specified, the point will be returned in
'uncompressed'
format.
If encoding
is provided a string is returned; otherwise a Buffer
is returned.
ecdh.getPrivateKey([encoding])
#
encoding
<string> The encoding of the return value.- Returns: <Buffer> | <string> The EC Diffie-Hellman in the specified
encoding
.
If encoding
is specified, a string is returned; otherwise a Buffer
is
returned.
ecdh.getPublicKey([encoding][, format])
#
encoding
<string> The encoding of the return value.format
<string> Default:'uncompressed'
- Returns: <Buffer> | <string> The EC Diffie-Hellman public key in the specified
encoding
andformat
.
The format
argument specifies point encoding and can be 'compressed'
or
'uncompressed'
. If format
is not specified the point will be returned in
'uncompressed'
format.
If encoding
is specified, a string is returned; otherwise a Buffer
is
returned.
ecdh.setPrivateKey(privateKey[, encoding])
#
privateKey
<string> | <Buffer> | <TypedArray> | <DataView>encoding
<string> The encoding of theprivateKey
string.
Sets the EC Diffie-Hellman private key.
If encoding
is provided, privateKey
is expected
to be a string; otherwise privateKey
is expected to be a Buffer
,
TypedArray
, or DataView
.
If privateKey
is not valid for the curve specified when the ECDH
object was
created, an error is thrown. Upon setting the private key, the associated
public point (key) is also generated and set in the ECDH
object.
ecdh.setPublicKey(publicKey[, encoding])
#
publicKey
<string> | <Buffer> | <TypedArray> | <DataView>encoding
<string> The encoding of thepublicKey
string.
Sets the EC Diffie-Hellman public key.
If encoding
is provided publicKey
is expected to
be a string; otherwise a Buffer
, TypedArray
, or DataView
is expected.
There is not normally a reason to call this method because ECDH
only requires a private key and the other party's public key to compute the
shared secret. Typically either ecdh.generateKeys()
or
ecdh.setPrivateKey()
will be called. The ecdh.setPrivateKey()
method
attempts to generate the public point/key associated with the private key being
set.
Example (obtaining a shared secret):
const crypto = require('crypto');
const alice = crypto.createECDH('secp256k1');
const bob = crypto.createECDH('secp256k1');
// This is a shortcut way of specifying one of Alice's previous private
// keys. It would be unwise to use such a predictable private key in a real
// application.
alice.setPrivateKey(
crypto.createHash('sha256').update('alice', 'utf8').digest()
);
// Bob uses a newly generated cryptographically strong
// pseudorandom key pair
bob.generateKeys();
const aliceSecret = alice.computeSecret(bob.getPublicKey(), null, 'hex');
const bobSecret = bob.computeSecret(alice.getPublicKey(), null, 'hex');
// aliceSecret and bobSecret should be the same shared secret value
console.log(aliceSecret === bobSecret);
Hash 类#
- 继承自: <stream.Transform>
Hash
类是一个实用工具,用于创建数据的哈希摘要。
它可以通过以下两种方式之一使用:
- 作为可读写的流,其中写入数据以在可读侧生成计算后的哈希摘要。
- 使用
hash.update()
和hash.digest()
方法生成计算后的哈希。
crypto.createHash()
方法用于创建 Hash
实例。
不能使用 new
关键字直接地创建 Hash
对象。
示例,使用 Hash
对象作为流:
const crypto = require('crypto');
const hash = crypto.createHash('sha256');
hash.on('readable', () => {
// 哈希流只会生成一个元素。
const data = hash.read();
if (data) {
console.log(data.toString('hex'));
// 打印:
// 164345eba9bccbafb94b27b8299d49cc2d80627fc9995b03230965e6d8bcbf56
}
});
hash.write('要创建哈希摘要的数据');
hash.end();
示例,使用 Hash
和管道流:
const crypto = require('crypto');
const fs = require('fs');
const hash = crypto.createHash('sha256');
const input = fs.createReadStream('要创建哈希摘要的数据.txt');
input.pipe(hash).setEncoding('hex').pipe(process.stdout);
示例,使用 hash.update()
和 hash.digest()
方法:
const crypto = require('crypto');
const hash = crypto.createHash('sha256');
hash.update('要创建哈希摘要的数据');
console.log(hash.digest('hex'));
// 打印:
// 164345eba9bccbafb94b27b8299d49cc2d80627fc9995b03230965e6d8bcbf56
hash.copy([options])
#
options
<Object>stream.transform
options- Returns: <Hash>
Creates a new Hash
object that contains a deep copy of the internal state
of the current Hash
object.
The optional options
argument controls stream behavior. For XOF hash
functions such as 'shake256'
, the outputLength
option can be used to
specify the desired output length in bytes.
An error is thrown when an attempt is made to copy the Hash
object after
its hash.digest()
method has been called.
// Calculate a rolling hash.
const crypto = require('crypto');
const hash = crypto.createHash('sha256');
hash.update('one');
console.log(hash.copy().digest('hex'));
hash.update('two');
console.log(hash.copy().digest('hex'));
hash.update('three');
console.log(hash.copy().digest('hex'));
// Etc.
hash.digest([encoding])
#
计算传入要被哈希(使用 hash.update()
方法)的所有数据的摘要。
如果提供了 encoding
,则返回字符串,否则返回 Buffer
。
调用 hash.digest()
方法之后, Hash
对象不能被再次使用。
多次调用将会导致抛出错误。
hash.update(data[, inputEncoding])
#
data
<string> | <Buffer> | <TypedArray> | <DataView>inputEncoding
<string>data
字符串的字符编码。
使用给定的 data
更新哈希的内容,该数据的字符编码在 inputEncoding
中给出。
如果未提供 encoding
,并且 data
是字符串,则强制执行 'utf8'
的编码。
如果 data
是一个 Buffer
、 TypedArray
或 DataView
,则 inputEncoding
会被忽略。
在流式传输时,可以使用新数据多次调用此方法。
Hmac 类#
- 继承自: <stream.Transform>
Hmac
类是一个实用工具,用于创建加密的 HMAC 摘要。
它可以通过以下两种方式之一使用:
- 作为可读写的流,其中写入数据以在可读侧生成计算后的 HMAC 摘要。
- 使用
hmac.update()
和hmac.digest()
方法生成计算后的 HMAC 摘要。
crypto.createHmac()
方法用于创建 Hmac
实例。
不能使用 new
关键字直接地创建 Hmac
对象。
示例,使用 Hmac
对象作为流:
const crypto = require('crypto');
const hmac = crypto.createHmac('sha256', '密钥');
hmac.on('readable', () => {
// 哈希流只会生成一个元素。
const data = hmac.read();
if (data) {
console.log(data.toString('hex'));
// 打印:
// d0b5490ab4beb8e6545fe284f484d0d595e46086cb8e6ef2291af12ac684102f
}
});
hmac.write('要创建哈希的数据');
hmac.end();
示例,使用 Hmac
和管道流:
const crypto = require('crypto');
const fs = require('fs');
const hmac = crypto.createHmac('sha256', '密钥');
const input = fs.createReadStream('要创建哈希的数据.txt');
input.pipe(hmac).pipe(process.stdout);
示例,使用 hmac.update()
和 hmac.digest()
方法:
const crypto = require('crypto');
const hmac = crypto.createHmac('sha256', '密钥');
hmac.update('要创建哈希的数据');
console.log(hmac.digest('hex'));
// 打印:
// d0b5490ab4beb8e6545fe284f484d0d595e46086cb8e6ef2291af12ac684102f
hmac.digest([encoding])
#
计算使用 hmac.update()
传入的所有数据的 HMAC 摘要。
如果提供了 encoding
,则返回字符串,否则返回 Buffer
。
调用 hmac.digest()
方法之后, Hmac
对象不能被再次使用。
多次调用 hmac.digest()
将会导致抛出错误。
hmac.update(data[, inputEncoding])
#
data
<string> | <Buffer> | <TypedArray> | <DataView>inputEncoding
<string>data
字符串的字符编码。
使用给定的 data
更新 Hmac
的内容,该数据的字符编码在 inputEncoding
中给出。
如果未提供 encoding
,并且 data
是字符串,则强制执行 'utf8'
的编码。
如果 data
是一个 Buffer
、 TypedArray
或 DataView
,则 inputEncoding
会被忽略。
在流式传输时,可以使用新数据多次调用此方法。
KeyObject 类#
Node.js uses a KeyObject
class to represent a symmetric or asymmetric key,
and each kind of key exposes different functions. The
crypto.createSecretKey()
, crypto.createPublicKey()
and
crypto.createPrivateKey()
methods are used to create KeyObject
instances. KeyObject
objects are not to be created directly using the new
keyword.
Most applications should consider using the new KeyObject
API instead of
passing keys as strings or Buffer
s due to improved security features.
KeyObject
instances can be passed to other threads via postMessage()
.
The receiver obtains a cloned KeyObject
, and the KeyObject
does not need to
be listed in the transferList
argument.
keyObject.asymmetricKeyType
#
For asymmetric keys, this property represents the type of the key. Supported key types are:
'rsa'
(OID 1.2.840.113549.1.1.1)'rsa-pss'
(OID 1.2.840.113549.1.1.10)'dsa'
(OID 1.2.840.10040.4.1)'ec'
(OID 1.2.840.10045.2.1)'x25519'
(OID 1.3.101.110)'x448'
(OID 1.3.101.111)'ed25519'
(OID 1.3.101.112)'ed448'
(OID 1.3.101.113)'dh'
(OID 1.2.840.113549.1.3.1)
This property is undefined
for unrecognized KeyObject
types and symmetric
keys.
keyObject.export([options])
#
For symmetric keys, this function allocates a Buffer
containing the key
material and ignores any options.
For asymmetric keys, the options
parameter is used to determine the export
format.
For public keys, the following encoding options can be used:
type
: <string> Must be one of'pkcs1'
(RSA only) or'spki'
.format
: <string> Must be'pem'
or'der'
.
For private keys, the following encoding options can be used:
type
: <string> Must be one of'pkcs1'
(RSA only),'pkcs8'
or'sec1'
(EC only).format
: <string> Must be'pem'
or'der'
.cipher
: <string> If specified, the private key will be encrypted with the givencipher
andpassphrase
using PKCS#5 v2.0 password based encryption.passphrase
: <string> | <Buffer> The passphrase to use for encryption, seecipher
.
When PEM encoding was selected, the result will be a string, otherwise it will be a buffer containing the data encoded as DER.
PKCS#1, SEC1, and PKCS#8 type keys can be encrypted by using a combination of
the cipher
and format
options. The PKCS#8 type
can be used with any
format
to encrypt any key algorithm (RSA, EC, or DH) by specifying a
cipher
. PKCS#1 and SEC1 can only be encrypted by specifying a cipher
when the PEM format
is used. For maximum compatibility, use PKCS#8 for
encrypted private keys. Since PKCS#8 defines its own
encryption mechanism, PEM-level encryption is not supported when encrypting
a PKCS#8 key. See RFC 5208 for PKCS#8 encryption and RFC 1421 for
PKCS#1 and SEC1 encryption.
keyObject.symmetricKeySize
#
For secret keys, this property represents the size of the key in bytes. This
property is undefined
for asymmetric keys.
keyObject.type
#
Depending on the type of this KeyObject
, this property is either
'secret'
for secret (symmetric) keys, 'public'
for public (asymmetric) keys
or 'private'
for private (asymmetric) keys.
Sign 类#
- 继承自: <stream.Writable>
Sign
类是一个实用工具,用于生成签名。
它可以通过以下两种方式之一使用:
- 作为可写的流,其中写入要签名的数据,并使用
sign.sign()
方法生成和返回签名。 - 使用
sign.update()
和sign.sign()
方法生成签名。
crypto.createSign()
方法用于创建 Sign
实例。
参数是要使用的哈希函数的字符串名称。
不能使用 new
关键字直接地创建 Sign
对象。
示例,使用 Sign
和 Verify
对象作为流:
const crypto = require('crypto');
const { privateKey, publicKey } = crypto.generateKeyPairSync('ec', {
namedCurve: 'sect239k1'
});
const sign = crypto.createSign('SHA256');
sign.write('要生成签名的数据');
sign.end();
const signature = sign.sign(privateKey, 'hex');
const verify = crypto.createVerify('SHA256');
verify.write('要生成签名的数据');
verify.end();
console.log(verify.verify(publicKey, signature, 'hex'));
// 打印 true
示例,使用 sign.update()
和 verify.update()
方法:
const crypto = require('crypto');
const { privateKey, publicKey } = crypto.generateKeyPairSync('rsa', {
modulusLength: 2048,
});
const sign = crypto.createSign('SHA256');
sign.update('要生成签名的数据');
sign.end();
const signature = sign.sign(privateKey);
const verify = crypto.createVerify('SHA256');
verify.update('要生成签名的数据');
verify.end();
console.log(verify.verify(publicKey, signature));
// 打印: true
sign.sign(privateKey[, outputEncoding])
#
privateKey
<Object> | <string> | <Buffer> | <KeyObject>outputEncoding
<string> The encoding of the return value.- Returns: <Buffer> | <string>
Calculates the signature on all the data passed through using either
sign.update()
or sign.write()
.
If privateKey
is not a KeyObject
, this function behaves as if
privateKey
had been passed to crypto.createPrivateKey()
. If it is an
object, the following additional properties can be passed:
-
dsaEncoding
<string> For DSA and ECDSA, this option specifies the format of the generated signature. It can be one of the following:'der'
(default): DER-encoded ASN.1 signature structure encoding(r, s)
.'ieee-p1363'
: Signature formatr || s
as proposed in IEEE-P1363.
-
padding
<integer> Optional padding value for RSA, one of the following:crypto.constants.RSA_PKCS1_PADDING
(default)crypto.constants.RSA_PKCS1_PSS_PADDING
RSA_PKCS1_PSS_PADDING
will use MGF1 with the same hash function used to sign the message as specified in section 3.1 of RFC 4055, unless an MGF1 hash function has been specified as part of the key in compliance with section 3.3 of RFC 4055. -
saltLength
<integer> Salt length for when padding isRSA_PKCS1_PSS_PADDING
. The special valuecrypto.constants.RSA_PSS_SALTLEN_DIGEST
sets the salt length to the digest size,crypto.constants.RSA_PSS_SALTLEN_MAX_SIGN
(default) sets it to the maximum permissible value.
If outputEncoding
is provided a string is returned; otherwise a Buffer
is returned.
The Sign
object can not be again used after sign.sign()
method has been
called. Multiple calls to sign.sign()
will result in an error being thrown.
sign.update(data[, inputEncoding])
#
data
<string> | <Buffer> | <TypedArray> | <DataView>inputEncoding
<string>data
字符串的字符编码。
使用给定的 data
更新 Sign
的内容,该数据的字符编码在 inputEncoding
中给出。
如果未提供 encoding
,并且 data
是字符串,则强制执行 'utf8'
的编码。
如果 data
是一个 Buffer
、 TypedArray
或 DataView
,则 inputEncoding
会被忽略。
在流式传输时,可以使用新数据多次调用此方法。
Verify 类#
- 继承自: <stream.Writable>
Verify
类是一个实用工具,用于验证签名。
它可以通过以下两种方式之一使用:
- 作为可写的流,其中使用写入的数据来验证提供的签名。
- 使用
verify.update()
和verify.verify()
方法来验证签名。
crypto.createVerify()
方法用于创建 Verify
实例。
不能使用 new
关键字直接地创建 Verify
对象。
有关示例,请参见 Sign
。
verify.update(data[, inputEncoding])
#
data
<string> | <Buffer> | <TypedArray> | <DataView>inputEncoding
<string>data
字符串的字符编码。
使用给定的 data
更新 Verify
的内容,该数据的字符编码在 inputEncoding
中给出。
如果未提供 encoding
,并且 data
是字符串,则强制执行 'utf8'
的编码。
如果 data
是一个 Buffer
、 TypedArray
或 DataView
,则 inputEncoding
会被忽略。
在流式传输时,可以使用新数据多次调用此方法。
verify.verify(object, signature[, signatureEncoding])
#
object
<Object> | <string> | <Buffer> | <KeyObject>signature
<string> | <Buffer> | <TypedArray> | <DataView>signatureEncoding
<string> The encoding of thesignature
string.- Returns: <boolean>
true
orfalse
depending on the validity of the signature for the data and public key.
Verifies the provided data using the given object
and signature
.
If object
is not a KeyObject
, this function behaves as if
object
had been passed to crypto.createPublicKey()
. If it is an
object, the following additional properties can be passed:
-
dsaEncoding
<string> For DSA and ECDSA, this option specifies the format of the generated signature. It can be one of the following:'der'
(default): DER-encoded ASN.1 signature structure encoding(r, s)
.'ieee-p1363'
: Signature formatr || s
as proposed in IEEE-P1363.
-
padding
<integer> Optional padding value for RSA, one of the following:crypto.constants.RSA_PKCS1_PADDING
(default)crypto.constants.RSA_PKCS1_PSS_PADDING
RSA_PKCS1_PSS_PADDING
will use MGF1 with the same hash function used to verify the message as specified in section 3.1 of RFC 4055, unless an MGF1 hash function has been specified as part of the key in compliance with section 3.3 of RFC 4055. -
saltLength
<integer> Salt length for when padding isRSA_PKCS1_PSS_PADDING
. The special valuecrypto.constants.RSA_PSS_SALTLEN_DIGEST
sets the salt length to the digest size,crypto.constants.RSA_PSS_SALTLEN_AUTO
(default) causes it to be determined automatically.
The signature
argument is the previously calculated signature for the data, in
the signatureEncoding
.
If a signatureEncoding
is specified, the signature
is expected to be a
string; otherwise signature
is expected to be a Buffer
,
TypedArray
, or DataView
.
The verify
object can not be used again after verify.verify()
has been
called. Multiple calls to verify.verify()
will result in an error being
thrown.
Because public keys can be derived from private keys, a private key may be passed instead of a public key.
crypto 模块的方法和属性#
crypto.constants
#
- Returns: <Object> An object containing commonly used constants for crypto and security related operations. The specific constants currently defined are described in Crypto constants.
crypto.DEFAULT_ENCODING
#
The default encoding to use for functions that can take either strings
or buffers. The default value is 'buffer'
, which makes methods
default to Buffer
objects.
The crypto.DEFAULT_ENCODING
mechanism is provided for backward compatibility
with legacy programs that expect 'latin1'
to be the default encoding.
New applications should expect the default to be 'buffer'
.
This property is deprecated.
crypto.fips
#
Property for checking and controlling whether a FIPS compliant crypto provider is currently in use. Setting to true requires a FIPS build of Node.js.
This property is deprecated. Please use crypto.setFips()
and
crypto.getFips()
instead.
crypto.createCipher(algorithm, password[, options])
#
crypto.createCipheriv()
。algorithm
<string>password
<string> | <Buffer> | <TypedArray> | <DataView>options
<Object>stream.transform
options- Returns: <Cipher>
Creates and returns a Cipher
object that uses the given algorithm
and
password
.
The options
argument controls stream behavior and is optional except when a
cipher in CCM or OCB mode is used (e.g. 'aes-128-ccm'
). In that case, the
authTagLength
option is required and specifies the length of the
authentication tag in bytes, see CCM mode. In GCM mode, the authTagLength
option is not required but can be used to set the length of the authentication
tag that will be returned by getAuthTag()
and defaults to 16 bytes.
The algorithm
is dependent on OpenSSL, examples are 'aes192'
, etc. On
recent OpenSSL releases, openssl list -cipher-algorithms
(openssl list-cipher-algorithms
for older versions of OpenSSL) will
display the available cipher algorithms.
The password
is used to derive the cipher key and initialization vector (IV).
The value must be either a 'latin1'
encoded string, a Buffer
, a
TypedArray
, or a DataView
.
The implementation of crypto.createCipher()
derives keys using the OpenSSL
function EVP_BytesToKey
with the digest algorithm set to MD5, one
iteration, and no salt. The lack of salt allows dictionary attacks as the same
password always creates the same key. The low iteration count and
non-cryptographically secure hash algorithm allow passwords to be tested very
rapidly.
In line with OpenSSL's recommendation to use a more modern algorithm instead of
EVP_BytesToKey
it is recommended that developers derive a key and IV on
their own using crypto.scrypt()
and to use crypto.createCipheriv()
to create the Cipher
object. Users should not use ciphers with counter mode
(e.g. CTR, GCM, or CCM) in crypto.createCipher()
. A warning is emitted when
they are used in order to avoid the risk of IV reuse that causes
vulnerabilities. For the case when IV is reused in GCM, see Nonce-Disrespecting
Adversaries for details.
crypto.createCipheriv(algorithm, key, iv[, options])
#
algorithm
<string>key
<string> | <Buffer> | <TypedArray> | <DataView> | <KeyObject>iv
<string> | <Buffer> | <TypedArray> | <DataView> | <null>options
<Object>stream.transform
的选项。- 返回: <Cipher>
使用给定的 algorithm
、 key
和初始化向量(iv
)创建并返回一个 Cipher
对象。
options
参数控制流的行为,它是可选的,除非使用 CCM 或 OCB 模式的密码(例如 'aes-128-ccm'
)。
在这种情况下,必须使用 authTagLength
选项,并以字节为单位指定身份验证标签的长度,参见 CCM 模式。
在 GCM 模式中,不需要 authTagLength
选项,但可以使用它来设置将会由 getAuthTag()
返回的身份验证标签的长度,默认为 16 个字节。
algorithm
取决于 OpenSSL,例如 'aes192'
等。
在 OpenSSL 的最新版本中, openssl list -cipher-algorithms
(在较旧版本的 OpenSSL 中是 openssl list-cipher-algorithms
)将会显示可用的密码算法。
key
是 algorithm
使用的原始密钥, iv
是初始化向量。
两个参数都必须是 'utf8'
编码的字符串、Buffer、 TypedArray
或 DataView
。
key
可以是 secret
类型的 KeyObject
。
如果密码不需要初始化向量,则 iv
可以为 null
。
初始化向量应该是不可预测的且唯一的,理想情况下,它们在密码上是随机的。 它们不必是私密的:IV 通常只是添加到未加密的密文消息中。 它们必须是不可预测的且唯一的,但不一定是私密的,这听起来似乎是矛盾的。 记住,攻击者必须无法提前预测给定的 IV 将会是什么。
crypto.createDecipher(algorithm, password[, options])
#
crypto.createDecipheriv()
。algorithm
<string>password
<string> | <Buffer> | <TypedArray> | <DataView>options
<Object>stream.transform
options- Returns: <Decipher>
Creates and returns a Decipher
object that uses the given algorithm
and
password
(key).
The options
argument controls stream behavior and is optional except when a
cipher in CCM or OCB mode is used (e.g. 'aes-128-ccm'
). In that case, the
authTagLength
option is required and specifies the length of the
authentication tag in bytes, see CCM mode.
The implementation of crypto.createDecipher()
derives keys using the OpenSSL
function EVP_BytesToKey
with the digest algorithm set to MD5, one
iteration, and no salt. The lack of salt allows dictionary attacks as the same
password always creates the same key. The low iteration count and
non-cryptographically secure hash algorithm allow passwords to be tested very
rapidly.
In line with OpenSSL's recommendation to use a more modern algorithm instead of
EVP_BytesToKey
it is recommended that developers derive a key and IV on
their own using crypto.scrypt()
and to use crypto.createDecipheriv()
to create the Decipher
object.
crypto.createDecipheriv(algorithm, key, iv[, options])
#
algorithm
<string>key
<string> | <Buffer> | <TypedArray> | <DataView> | <KeyObject>iv
<string> | <Buffer> | <TypedArray> | <DataView> | <null>options
<Object>stream.transform
的选项。- 返回: <Decipher>
使用给定的 algorithm
、 key
和初始化向量(iv
)创建并返回一个 Decipher
对象。
options
参数控制流的行为,它是可选的,除非使用 CCM 或 OCB 模式的密码(例如 'aes-128-ccm'
)。
在这种情况下,必须使用 authTagLength
选项,并以字节为单位指定身份验证标签的长度,参见 CCM 模式。
在 GCM 模式中,不需要 authTagLength
选项,但可用于将接受的身份验证标签限制为具有指定的长度。
algorithm
取决于 OpenSSL,例如 'aes192'
等。
在 OpenSSL 的最新版本中, openssl list -cipher-algorithms
(在较旧版本的 OpenSSL 中是 openssl list-cipher-algorithms
)将会显示可用的密码算法。
key
是 algorithm
使用的原始密钥, iv
是初始化向量。
两个参数都必须是 'utf8'
编码的字符串、Buffer、 TypedArray
或 DataView
。
key
可以是 secret
类型的 KeyObject
。
如果密码不需要初始化向量,则 iv
可以为 null
。
初始化向量应该是不可预测的且唯一的,理想情况下,它们在密码上是随机的。 它们不必是私密的:IV 通常只是添加到未加密的密文消息中。 它们必须是不可预测的且唯一的,但不一定是私密的,这听起来似乎是矛盾的。 记住,攻击者必须无法提前预测给定的 IV 将会是什么。
crypto.createDiffieHellman(prime[, primeEncoding][, generator][, generatorEncoding])
#
prime
<string> | <Buffer> | <TypedArray> | <DataView>primeEncoding
<string> The encoding of theprime
string.generator
<number> | <string> | <Buffer> | <TypedArray> | <DataView> Default:2
generatorEncoding
<string> The encoding of thegenerator
string.- Returns: <DiffieHellman>
Creates a DiffieHellman
key exchange object using the supplied prime
and an
optional specific generator
.
The generator
argument can be a number, string, or Buffer
. If
generator
is not specified, the value 2
is used.
If primeEncoding
is specified, prime
is expected to be a string; otherwise
a Buffer
, TypedArray
, or DataView
is expected.
If generatorEncoding
is specified, generator
is expected to be a string;
otherwise a number, Buffer
, TypedArray
, or DataView
is expected.
crypto.createDiffieHellman(primeLength[, generator])
#
primeLength
<number>generator
<number> Default:2
- Returns: <DiffieHellman>
Creates a DiffieHellman
key exchange object and generates a prime of
primeLength
bits using an optional specific numeric generator
.
If generator
is not specified, the value 2
is used.
crypto.createDiffieHellmanGroup(name)
#
name
<string>- Returns: <DiffieHellmanGroup>
An alias for crypto.getDiffieHellman()
crypto.createECDH(curveName)
#
Creates an Elliptic Curve Diffie-Hellman (ECDH
) key exchange object using a
predefined curve specified by the curveName
string. Use
crypto.getCurves()
to obtain a list of available curve names. On recent
OpenSSL releases, openssl ecparam -list_curves
will also display the name
and description of each available elliptic curve.
crypto.createHash(algorithm[, options])
#
algorithm
<string>options
<Object>stream.transform
的选项。- 返回: <Hash>
创建并返回一个 Hash
对象,该对象可用于生成哈希摘要(使用给定的 algorithm
)。
可选的 options
参数控制流的行为。
对于 XOF 哈希函数(例如 'shake256'
), outputLength
选项可用于指定所需的输出长度(以字节为单位)。
algorithm
取决于平台上的 OpenSSL 的版本所支持的可用算法。
例如 'sha256'
、 'sha512'
等。
在 OpenSSL 的最新版本中, openssl list -digest-algorithms
(在较旧版本的 OpenSSL 中是 openssl list-message-digest-algorithms
)将会显示可用的摘要算法。
示例,生成一个文件的 sha256 总和:
const filename = process.argv[2];
const crypto = require('crypto');
const fs = require('fs');
const hash = crypto.createHash('sha256');
const input = fs.createReadStream(filename);
input.on('readable', () => {
// 哈希流只会生成一个元素。
const data = input.read();
if (data)
hash.update(data);
else {
console.log(`${hash.digest('hex')} ${filename}`);
}
});
crypto.createHmac(algorithm, key[, options])
#
algorithm
<string>key
<string> | <Buffer> | <TypedArray> | <DataView> | <KeyObject>options
<Object>stream.transform
的选项。- 返回: <Hmac>
创建并返回一个 Hmac
对象,该对象使用给定的 algorithm
和 key
。
可选的 options
参数控制流的行为。
algorithm
取决于平台上的 OpenSSL 的版本所支持的可用算法。
例如 'sha256'
、 'sha512'
等。
在 OpenSSL 的最新版本中, openssl list -digest-algorithms
(在较旧版本的 OpenSSL 中是 openssl list-message-digest-algorithms
)将会显示可用的摘要算法。
key
是用于生成加密的 HMAC 哈希的 HMAC 密钥。
如果它是一个 KeyObject
,则其类型必须是 secret
。
示例,生成一个文件的 sha256 HMAC:
const filename = process.argv[2];
const crypto = require('crypto');
const fs = require('fs');
const hmac = crypto.createHmac('sha256', '密钥');
const input = fs.createReadStream(filename);
input.on('readable', () => {
// 哈希流只会生成一个元素。
const data = input.read();
if (data)
hmac.update(data);
else {
console.log(`${hmac.digest('hex')} ${filename}`);
}
});
crypto.createPrivateKey(key)
#
key
<Object> | <string> | <Buffer>key
: <string> | <Buffer> The key material, either in PEM or DER format.format
: <string> Must be'pem'
or'der'
. Default:'pem'
.type
: <string> Must be'pkcs1'
,'pkcs8'
or'sec1'
. This option is required only if theformat
is'der'
and ignored if it is'pem'
.passphrase
: <string> | <Buffer> The passphrase to use for decryption.
- Returns: <KeyObject>
Creates and returns a new key object containing a private key. If key
is a
string or Buffer
, format
is assumed to be 'pem'
; otherwise, key
must be an object with the properties described above.
If the private key is encrypted, a passphrase
must be specified. The length
of the passphrase is limited to 1024 bytes.
crypto.createPublicKey(key)
#
key
<Object> | <string> | <Buffer> | <KeyObject>- Returns: <KeyObject>
Creates and returns a new key object containing a public key. If key
is a
string or Buffer
, format
is assumed to be 'pem'
; if key
is a KeyObject
with type 'private'
, the public key is derived from the given private key;
otherwise, key
must be an object with the properties described above.
If the format is 'pem'
, the 'key'
may also be an X.509 certificate.
Because public keys can be derived from private keys, a private key may be
passed instead of a public key. In that case, this function behaves as if
crypto.createPrivateKey()
had been called, except that the type of the
returned KeyObject
will be 'public'
and that the private key cannot be
extracted from the returned KeyObject
. Similarly, if a KeyObject
with type
'private'
is given, a new KeyObject
with type 'public'
will be returned
and it will be impossible to extract the private key from the returned object.
crypto.createSecretKey(key)
#
key
<Buffer> | <TypedArray> | <DataView>- Returns: <KeyObject>
Creates and returns a new key object containing a secret key for symmetric
encryption or Hmac
.
crypto.createSign(algorithm[, options])
#
algorithm
<string>options
<Object>stream.Writable
options- Returns: <Sign>
Creates and returns a Sign
object that uses the given algorithm
. Use
crypto.getHashes()
to obtain the names of the available digest algorithms.
Optional options
argument controls the stream.Writable
behavior.
In some cases, a Sign
instance can be created using the name of a signature
algorithm, such as 'RSA-SHA256'
, instead of a digest algorithm. This will use
the corresponding digest algorithm. This does not work for all signature
algorithms, such as 'ecdsa-with-SHA256'
, so it is best to always use digest
algorithm names.
crypto.createVerify(algorithm[, options])
#
algorithm
<string>options
<Object>stream.Writable
options- Returns: <Verify>
Creates and returns a Verify
object that uses the given algorithm.
Use crypto.getHashes()
to obtain an array of names of the available
signing algorithms. Optional options
argument controls the
stream.Writable
behavior.
In some cases, a Verify
instance can be created using the name of a signature
algorithm, such as 'RSA-SHA256'
, instead of a digest algorithm. This will use
the corresponding digest algorithm. This does not work for all signature
algorithms, such as 'ecdsa-with-SHA256'
, so it is best to always use digest
algorithm names.
crypto.diffieHellman(options)
#
options
: <Object>privateKey
: <KeyObject>publicKey
: <KeyObject>
- Returns: <Buffer>
Computes the Diffie-Hellman secret based on a privateKey
and a publicKey
.
Both keys must have the same asymmetricKeyType
, which must be one of 'dh'
(for Diffie-Hellman), 'ec'
(for ECDH), 'x448'
, or 'x25519'
(for ECDH-ES).
crypto.generateKeyPair(type, options, callback)
#
type
: <string> Must be'rsa'
,'dsa'
,'ec'
,'ed25519'
,'ed448'
,'x25519'
,'x448'
, or'dh'
.options
: <Object>modulusLength
: <number> Key size in bits (RSA, DSA).publicExponent
: <number> Public exponent (RSA). Default:0x10001
.divisorLength
: <number> Size ofq
in bits (DSA).namedCurve
: <string> Name of the curve to use (EC).prime
: <Buffer> The prime parameter (DH).primeLength
: <number> Prime length in bits (DH).generator
: <number> Custom generator (DH). Default:2
.groupName
: <string> Diffie-Hellman group name (DH). Seecrypto.getDiffieHellman()
.publicKeyEncoding
: <Object> SeekeyObject.export()
.privateKeyEncoding
: <Object> SeekeyObject.export()
.
callback
: <Function>err
: <Error>publicKey
: <string> | <Buffer> | <KeyObject>privateKey
: <string> | <Buffer> | <KeyObject>
Generates a new asymmetric key pair of the given type
. RSA, DSA, EC, Ed25519,
Ed448, X25519, X448, and DH are currently supported.
If a publicKeyEncoding
or privateKeyEncoding
was specified, this function
behaves as if keyObject.export()
had been called on its result. Otherwise,
the respective part of the key is returned as a KeyObject
.
It is recommended to encode public keys as 'spki'
and private keys as
'pkcs8'
with encryption for long-term storage:
const { generateKeyPair } = require('crypto');
generateKeyPair('rsa', {
modulusLength: 4096,
publicKeyEncoding: {
type: 'spki',
format: 'pem'
},
privateKeyEncoding: {
type: 'pkcs8',
format: 'pem',
cipher: 'aes-256-cbc',
passphrase: 'top secret'
}
}, (err, publicKey, privateKey) => {
// Handle errors and use the generated key pair.
});
On completion, callback
will be called with err
set to undefined
and
publicKey
/ privateKey
representing the generated key pair.
If this method is invoked as its util.promisify()
ed version, it returns
a Promise
for an Object
with publicKey
and privateKey
properties.
crypto.generateKeyPairSync(type, options)
#
type
: <string> Must be'rsa'
,'dsa'
,'ec'
,'ed25519'
,'ed448'
,'x25519'
,'x448'
, or'dh'
.options
: <Object>modulusLength
: <number> Key size in bits (RSA, DSA).publicExponent
: <number> Public exponent (RSA). Default:0x10001
.divisorLength
: <number> Size ofq
in bits (DSA).namedCurve
: <string> Name of the curve to use (EC).prime
: <Buffer> The prime parameter (DH).primeLength
: <number> Prime length in bits (DH).generator
: <number> Custom generator (DH). Default:2
.groupName
: <string> Diffie-Hellman group name (DH). Seecrypto.getDiffieHellman()
.publicKeyEncoding
: <Object> SeekeyObject.export()
.privateKeyEncoding
: <Object> SeekeyObject.export()
.
- Returns: <Object>
publicKey
: <string> | <Buffer> | <KeyObject>privateKey
: <string> | <Buffer> | <KeyObject>
Generates a new asymmetric key pair of the given type
. RSA, DSA, EC, Ed25519,
Ed448, X25519, X448, and DH are currently supported.
If a publicKeyEncoding
or privateKeyEncoding
was specified, this function
behaves as if keyObject.export()
had been called on its result. Otherwise,
the respective part of the key is returned as a KeyObject
.
When encoding public keys, it is recommended to use 'spki'
. When encoding
private keys, it is recommended to use 'pkcs8'
with a strong passphrase,
and to keep the passphrase confidential.
const { generateKeyPairSync } = require('crypto');
const { publicKey, privateKey } = generateKeyPairSync('rsa', {
modulusLength: 4096,
publicKeyEncoding: {
type: 'spki',
format: 'pem'
},
privateKeyEncoding: {
type: 'pkcs8',
format: 'pem',
cipher: 'aes-256-cbc',
passphrase: 'top secret'
}
});
The return value { publicKey, privateKey }
represents the generated key pair.
When PEM encoding was selected, the respective key will be a string, otherwise
it will be a buffer containing the data encoded as DER.
crypto.getCiphers()
#
- Returns: <string[]> An array with the names of the supported cipher algorithms.
const ciphers = crypto.getCiphers();
console.log(ciphers); // ['aes-128-cbc', 'aes-128-ccm', ...]
crypto.getCurves()
#
- Returns: <string[]> An array with the names of the supported elliptic curves.
const curves = crypto.getCurves();
console.log(curves); // ['Oakley-EC2N-3', 'Oakley-EC2N-4', ...]
crypto.getDiffieHellman(groupName)
#
groupName
<string>- Returns: <DiffieHellmanGroup>
Creates a predefined DiffieHellmanGroup
key exchange object. The
supported groups are: 'modp1'
, 'modp2'
, 'modp5'
(defined in
RFC 2412, but see Caveats) and 'modp14'
, 'modp15'
,
'modp16'
, 'modp17'
, 'modp18'
(defined in RFC 3526). The
returned object mimics the interface of objects created by
crypto.createDiffieHellman()
, but will not allow changing
the keys (with diffieHellman.setPublicKey()
, for example). The
advantage of using this method is that the parties do not have to
generate nor exchange a group modulus beforehand, saving both processor
and communication time.
Example (obtaining a shared secret):
const crypto = require('crypto');
const alice = crypto.getDiffieHellman('modp14');
const bob = crypto.getDiffieHellman('modp14');
alice.generateKeys();
bob.generateKeys();
const aliceSecret = alice.computeSecret(bob.getPublicKey(), null, 'hex');
const bobSecret = bob.computeSecret(alice.getPublicKey(), null, 'hex');
/* aliceSecret and bobSecret should be the same */
console.log(aliceSecret === bobSecret);
crypto.getFips()
#
- Returns: <number>
1
if and only if a FIPS compliant crypto provider is currently in use,0
otherwise. A future semver-major release may change the return type of this API to a <boolean>.
crypto.getHashes()
#
- Returns: <string[]> An array of the names of the supported hash algorithms,
such as
'RSA-SHA256'
. Hash algorithms are also called "digest" algorithms.
const hashes = crypto.getHashes();
console.log(hashes); // ['DSA', 'DSA-SHA', 'DSA-SHA1', ...]
crypto.pbkdf2(password, salt, iterations, keylen, digest, callback)
#
password
<string> | <Buffer> | <TypedArray> | <DataView>salt
<string> | <Buffer> | <TypedArray> | <DataView>iterations
<number>keylen
<number>digest
<string>callback
<Function>
Provides an asynchronous Password-Based Key Derivation Function 2 (PBKDF2)
implementation. A selected HMAC digest algorithm specified by digest
is
applied to derive a key of the requested byte length (keylen
) from the
password
, salt
and iterations
.
The supplied callback
function is called with two arguments: err
and
derivedKey
. If an error occurs while deriving the key, err
will be set;
otherwise err
will be null
. By default, the successfully generated
derivedKey
will be passed to the callback as a Buffer
. An error will be
thrown if any of the input arguments specify invalid values or types.
If digest
is null
, 'sha1'
will be used. This behavior is deprecated,
please specify a digest
explicitly.
The iterations
argument must be a number set as high as possible. The
higher the number of iterations, the more secure the derived key will be,
but will take a longer amount of time to complete.
The salt
should be as unique as possible. It is recommended that a salt is
random and at least 16 bytes long. See NIST SP 800-132 for details.
const crypto = require('crypto');
crypto.pbkdf2('secret', 'salt', 100000, 64, 'sha512', (err, derivedKey) => {
if (err) throw err;
console.log(derivedKey.toString('hex')); // '3745e48...08d59ae'
});
The crypto.DEFAULT_ENCODING
property can be used to change the way the
derivedKey
is passed to the callback. This property, however, has been
deprecated and use should be avoided.
const crypto = require('crypto');
crypto.DEFAULT_ENCODING = 'hex';
crypto.pbkdf2('secret', 'salt', 100000, 512, 'sha512', (err, derivedKey) => {
if (err) throw err;
console.log(derivedKey); // '3745e48...aa39b34'
});
An array of supported digest functions can be retrieved using
crypto.getHashes()
.
This API uses libuv's threadpool, which can have surprising and
negative performance implications for some applications; see the
UV_THREADPOOL_SIZE
documentation for more information.
crypto.pbkdf2Sync(password, salt, iterations, keylen, digest)
#
password
<string> | <Buffer> | <TypedArray> | <DataView>salt
<string> | <Buffer> | <TypedArray> | <DataView>iterations
<number>keylen
<number>digest
<string>- Returns: <Buffer>
Provides a synchronous Password-Based Key Derivation Function 2 (PBKDF2)
implementation. A selected HMAC digest algorithm specified by digest
is
applied to derive a key of the requested byte length (keylen
) from the
password
, salt
and iterations
.
If an error occurs an Error
will be thrown, otherwise the derived key will be
returned as a Buffer
.
If digest
is null
, 'sha1'
will be used. This behavior is deprecated,
please specify a digest
explicitly.
The iterations
argument must be a number set as high as possible. The
higher the number of iterations, the more secure the derived key will be,
but will take a longer amount of time to complete.
The salt
should be as unique as possible. It is recommended that a salt is
random and at least 16 bytes long. See NIST SP 800-132 for details.
const crypto = require('crypto');
const key = crypto.pbkdf2Sync('secret', 'salt', 100000, 64, 'sha512');
console.log(key.toString('hex')); // '3745e48...08d59ae'
The crypto.DEFAULT_ENCODING
property may be used to change the way the
derivedKey
is returned. This property, however, is deprecated and use
should be avoided.
const crypto = require('crypto');
crypto.DEFAULT_ENCODING = 'hex';
const key = crypto.pbkdf2Sync('secret', 'salt', 100000, 512, 'sha512');
console.log(key); // '3745e48...aa39b34'
An array of supported digest functions can be retrieved using
crypto.getHashes()
.
crypto.privateDecrypt(privateKey, buffer)
#
privateKey
<Object> | <string> | <Buffer> | <KeyObject>oaepHash
<string> The hash function to use for OAEP padding and MGF1. Default:'sha1'
oaepLabel
<Buffer> | <TypedArray> | <DataView> The label to use for OAEP padding. If not specified, no label is used.padding
<crypto.constants> An optional padding value defined incrypto.constants
, which may be:crypto.constants.RSA_NO_PADDING
,crypto.constants.RSA_PKCS1_PADDING
, orcrypto.constants.RSA_PKCS1_OAEP_PADDING
.
buffer
<Buffer> | <TypedArray> | <DataView>- Returns: <Buffer> A new
Buffer
with the decrypted content.
Decrypts buffer
with privateKey
. buffer
was previously encrypted using
the corresponding public key, for example using crypto.publicEncrypt()
.
If privateKey
is not a KeyObject
, this function behaves as if
privateKey
had been passed to crypto.createPrivateKey()
. If it is an
object, the padding
property can be passed. Otherwise, this function uses
RSA_PKCS1_OAEP_PADDING
.
crypto.privateEncrypt(privateKey, buffer)
#
privateKey
<Object> | <string> | <Buffer> | <KeyObject>key
<string> | <Buffer> | <KeyObject> A PEM encoded private key.passphrase
<string> | <Buffer> An optional passphrase for the private key.padding
<crypto.constants> An optional padding value defined incrypto.constants
, which may be:crypto.constants.RSA_NO_PADDING
orcrypto.constants.RSA_PKCS1_PADDING
.
buffer
<Buffer> | <TypedArray> | <DataView>- Returns: <Buffer> A new
Buffer
with the encrypted content.
Encrypts buffer
with privateKey
. The returned data can be decrypted using
the corresponding public key, for example using crypto.publicDecrypt()
.
If privateKey
is not a KeyObject
, this function behaves as if
privateKey
had been passed to crypto.createPrivateKey()
. If it is an
object, the padding
property can be passed. Otherwise, this function uses
RSA_PKCS1_PADDING
.
crypto.publicDecrypt(key, buffer)
#
key
<Object> | <string> | <Buffer> | <KeyObject>passphrase
<string> | <Buffer> An optional passphrase for the private key.padding
<crypto.constants> An optional padding value defined incrypto.constants
, which may be:crypto.constants.RSA_NO_PADDING
orcrypto.constants.RSA_PKCS1_PADDING
.
buffer
<Buffer> | <TypedArray> | <DataView>- Returns: <Buffer> A new
Buffer
with the decrypted content.
Decrypts buffer
with key
.buffer
was previously encrypted using
the corresponding private key, for example using crypto.privateEncrypt()
.
If key
is not a KeyObject
, this function behaves as if
key
had been passed to crypto.createPublicKey()
. If it is an
object, the padding
property can be passed. Otherwise, this function uses
RSA_PKCS1_PADDING
.
Because RSA public keys can be derived from private keys, a private key may be passed instead of a public key.
crypto.publicEncrypt(key, buffer)
#
key
<Object> | <string> | <Buffer> | <KeyObject>key
<string> | <Buffer> | <KeyObject> A PEM encoded public or private key.oaepHash
<string> The hash function to use for OAEP padding and MGF1. Default:'sha1'
oaepLabel
<Buffer> | <TypedArray> | <DataView> The label to use for OAEP padding. If not specified, no label is used.passphrase
<string> | <Buffer> An optional passphrase for the private key.padding
<crypto.constants> An optional padding value defined incrypto.constants
, which may be:crypto.constants.RSA_NO_PADDING
,crypto.constants.RSA_PKCS1_PADDING
, orcrypto.constants.RSA_PKCS1_OAEP_PADDING
.
buffer
<Buffer> | <TypedArray> | <DataView>- Returns: <Buffer> A new
Buffer
with the encrypted content.
Encrypts the content of buffer
with key
and returns a new
Buffer
with encrypted content. The returned data can be decrypted using
the corresponding private key, for example using crypto.privateDecrypt()
.
If key
is not a KeyObject
, this function behaves as if
key
had been passed to crypto.createPublicKey()
. If it is an
object, the padding
property can be passed. Otherwise, this function uses
RSA_PKCS1_OAEP_PADDING
.
Because RSA public keys can be derived from private keys, a private key may be passed instead of a public key.
crypto.randomBytes(size[, callback])
#
size
<number>callback
<Function>- 返回: <Buffer> 如果未提供
callback
函数。
生成加密强伪随机数据。
size
参数是指示要生成的字节数的数值。
如果提供 callback
函数,则这些字节是异步生成的并且使用两个参数调用 callback
函数:err
和 buf
。
如果发生错误,则 err
是一个 Error
对象,否则为 null
。
buf
参数是包含生成字节的 Buffer
。
// 异步的。
const crypto = require('crypto');
crypto.randomBytes(256, (err, buf) => {
if (err) throw err;
console.log(`${buf.length} 位的随机数据: ${buf.toString('hex')}`);
});
如果未提供 callback
函数,则同步地生成随机字节并返回为 Buffer
。
如果生成字节遇到问题,将会抛出一个错误。
// 同步的。
const buf = crypto.randomBytes(256);
console.log(
`${buf.length} 位的随机数据: ${buf.toString('hex')}`);
crypto.randomBytes()
方法将在获得足够的熵之后完成。
这通常不会超过几毫秒。
只有在刚开启时才可能会阻塞更久,因为此时整个系统的熵不多。
这个 API 使用 libuv 的线程池,所以在某些时候可能会产生意外的性能问题,查看 UV_THREADPOOL_SIZE
的文档以了解更多信息。
crypto.randomBytes()
的异步版本在单个线程池请求中执行。
要最小化线程池任务长度变化,请在执行此操作时对大型的 randomBytes
请求进行分区,以完成客户端请求。
crypto.randomFillSync(buffer[, offset][, size])
#
buffer
<Buffer> | <TypedArray> | <DataView> Must be supplied.offset
<number> Default:0
size
<number> Default:buffer.length - offset
- Returns: <Buffer> | <TypedArray> | <DataView> The object passed as
buffer
argument.
Synchronous version of crypto.randomFill()
.
const buf = Buffer.alloc(10);
console.log(crypto.randomFillSync(buf).toString('hex'));
crypto.randomFillSync(buf, 5);
console.log(buf.toString('hex'));
// The above is equivalent to the following:
crypto.randomFillSync(buf, 5, 5);
console.log(buf.toString('hex'));
Any TypedArray
or DataView
instance may be passed as buffer
.
const a = new Uint32Array(10);
console.log(Buffer.from(crypto.randomFillSync(a).buffer,
a.byteOffset, a.byteLength).toString('hex'));
const b = new Float64Array(10);
console.log(Buffer.from(crypto.randomFillSync(b).buffer,
b.byteOffset, b.byteLength).toString('hex'));
const c = new DataView(new ArrayBuffer(10));
console.log(Buffer.from(crypto.randomFillSync(c).buffer,
c.byteOffset, c.byteLength).toString('hex'));
crypto.randomFill(buffer[, offset][, size], callback)
#
buffer
<Buffer> | <TypedArray> | <DataView> Must be supplied.offset
<number> Default:0
size
<number> Default:buffer.length - offset
callback
<Function>function(err, buf) {}
.
This function is similar to crypto.randomBytes()
but requires the first
argument to be a Buffer
that will be filled. It also
requires that a callback is passed in.
If the callback
function is not provided, an error will be thrown.
const buf = Buffer.alloc(10);
crypto.randomFill(buf, (err, buf) => {
if (err) throw err;
console.log(buf.toString('hex'));
});
crypto.randomFill(buf, 5, (err, buf) => {
if (err) throw err;
console.log(buf.toString('hex'));
});
// The above is equivalent to the following:
crypto.randomFill(buf, 5, 5, (err, buf) => {
if (err) throw err;
console.log(buf.toString('hex'));
});
Any TypedArray
or DataView
instance may be passed as buffer
.
const a = new Uint32Array(10);
crypto.randomFill(a, (err, buf) => {
if (err) throw err;
console.log(Buffer.from(buf.buffer, buf.byteOffset, buf.byteLength)
.toString('hex'));
});
const b = new Float64Array(10);
crypto.randomFill(b, (err, buf) => {
if (err) throw err;
console.log(Buffer.from(buf.buffer, buf.byteOffset, buf.byteLength)
.toString('hex'));
});
const c = new DataView(new ArrayBuffer(10));
crypto.randomFill(c, (err, buf) => {
if (err) throw err;
console.log(Buffer.from(buf.buffer, buf.byteOffset, buf.byteLength)
.toString('hex'));
});
This API uses libuv's threadpool, which can have surprising and
negative performance implications for some applications; see the
UV_THREADPOOL_SIZE
documentation for more information.
The asynchronous version of crypto.randomFill()
is carried out in a single
threadpool request. To minimize threadpool task length variation, partition
large randomFill
requests when doing so as part of fulfilling a client
request.
crypto.randomInt([min, ]max[, callback])
#
min
<integer> Start of random range (inclusive). Default:0
.max
<integer> End of random range (exclusive).callback
<Function>function(err, n) {}
.
Return a random integer n
such that min <= n < max
. This
implementation avoids modulo bias.
The range (max - min
) must be less than 248. min
and max
must
be safe integers.
If the callback
function is not provided, the random integer is
generated synchronously.
// Asynchronous
crypto.randomInt(3, (err, n) => {
if (err) throw err;
console.log(`Random number chosen from (0, 1, 2): ${n}`);
});
// Synchronous
const n = crypto.randomInt(3);
console.log(`Random number chosen from (0, 1, 2): ${n}`);
// With `min` argument
const n = crypto.randomInt(1, 7);
console.log(`The dice rolled: ${n}`);
crypto.scrypt(password, salt, keylen[, options], callback)
#
password
<string> | <Buffer> | <TypedArray> | <DataView>salt
<string> | <Buffer> | <TypedArray> | <DataView>keylen
<number>options
<Object>cost
<number> CPU 或内存的成本参数。必须是 2 的次方且大于1。默认值:16384
。blockSize
<number> 块大小参数。默认值:8
。parallelization
<number> 并行化参数。默认值:1
。N
<number>cost
的别名。只能指定两者之一。r
<number>blockSize
的别名。只能指定两者之一。p
<number>parallelization
的别名。只能指定两者之一。maxmem
<number> 内存的上限。当(大约)128 * N * r > maxmem
时是错误的。默认值:32 * 1024 * 1024
。
callback
<Function>
提供异步的 scrypt 实现。 Scrypt 是一个基于密码的密钥派生函数,被设计为在计算和内存方面都非常高成本,目的是使暴力破解无法成功。
salt
应尽可能独特。
建议盐值是随机的并且至少 16 个字节长。
有关详细信息,请参见 NIST SP 800-132。
callback
函数有两个参数:err
和 derivedKey
。
当密钥派生失败时, err
是一个异常对象,否则 err
为 null
。
derivedKey
会作为 Buffer
传给回调。
当任何的输入参数指定了无效的值或类型时,会抛出异常。
const crypto = require('crypto');
// 使用出厂默认值。
crypto.scrypt('密码', '盐值', 64, (err, derivedKey) => {
if (err) throw err;
console.log(derivedKey.toString('hex')); // '00d9e09...8a4f15a'
});
// 使用自定义的 N 参数。必须是 2 的次方。
crypto.scrypt('密码', '盐值', 64, { N: 1024 }, (err, derivedKey) => {
if (err) throw err;
console.log(derivedKey.toString('hex')); // 'f710b45...f04e377'
});
crypto.scryptSync(password, salt, keylen[, options])
#
password
<string> | <Buffer> | <TypedArray> | <DataView>salt
<string> | <Buffer> | <TypedArray> | <DataView>keylen
<number>options
<Object>cost
<number> CPU 或内存的成本参数。必须是 2 的次方且大于1。默认值:16384
。blockSize
<number> 块大小参数。默认值:8
。parallelization
<number> 并行化参数。默认值:1
。N
<number>cost
的别名。只能指定两者之一。r
<number>blockSize
的别名。只能指定两者之一。p
<number>parallelization
的别名。只能指定两者之一。maxmem
<number> 内存的上限。当(大约)128 * N * r > maxmem
时是错误的。默认值:32 * 1024 * 1024
。
- 返回: <Buffer>
提供同步的 scrypt 实现。 Scrypt 是一个基于密码的密钥派生函数,被设计为在计算和内存方面都非常高成本,目的是使暴力破解无法成功。
salt
应尽可能独特。
建议盐值是随机的并且至少 16 个字节长。
有关详细信息,请参见 NIST SP 800-132。
当密钥派生失败时,会抛出异常,否则派生的密钥会作为 Buffer
返回。
当任何的输入参数指定了无效的值或类型时,会抛出异常。
const crypto = require('crypto');
// 使用出厂默认值。
const key1 = crypto.scryptSync('密码', '盐值', 64);
console.log(key1.toString('hex')); // '00d9e09...8a4f15a'
// 使用自定义的 N 参数。必须是 2 的次方。
const key2 = crypto.scryptSync('密码', '盐值', 64, { N: 1024 });
console.log(key2.toString('hex')); // 'f710b45...f04e377'
crypto.setEngine(engine[, flags])
#
engine
<string>flags
<crypto.constants> Default:crypto.constants.ENGINE_METHOD_ALL
Load and set the engine
for some or all OpenSSL functions (selected by flags).
engine
could be either an id or a path to the engine's shared library.
The optional flags
argument uses ENGINE_METHOD_ALL
by default. The flags
is a bit field taking one of or a mix of the following flags (defined in
crypto.constants
):
crypto.constants.ENGINE_METHOD_RSA
crypto.constants.ENGINE_METHOD_DSA
crypto.constants.ENGINE_METHOD_DH
crypto.constants.ENGINE_METHOD_RAND
crypto.constants.ENGINE_METHOD_EC
crypto.constants.ENGINE_METHOD_CIPHERS
crypto.constants.ENGINE_METHOD_DIGESTS
crypto.constants.ENGINE_METHOD_PKEY_METHS
crypto.constants.ENGINE_METHOD_PKEY_ASN1_METHS
crypto.constants.ENGINE_METHOD_ALL
crypto.constants.ENGINE_METHOD_NONE
The flags below are deprecated in OpenSSL-1.1.0.
crypto.constants.ENGINE_METHOD_ECDH
crypto.constants.ENGINE_METHOD_ECDSA
crypto.constants.ENGINE_METHOD_STORE
crypto.setFips(bool)
#
bool
<boolean>true
to enable FIPS mode.
Enables the FIPS compliant crypto provider in a FIPS-enabled Node.js build. Throws an error if FIPS mode is not available.
crypto.sign(algorithm, data, key)
#
algorithm
<string> | <null> | <undefined>data
<Buffer> | <TypedArray> | <DataView>key
<Object> | <string> | <Buffer> | <KeyObject>- Returns: <Buffer>
Calculates and returns the signature for data
using the given private key and
algorithm. If algorithm
is null
or undefined
, then the algorithm is
dependent upon the key type (especially Ed25519 and Ed448).
If key
is not a KeyObject
, this function behaves as if key
had been
passed to crypto.createPrivateKey()
. If it is an object, the following
additional properties can be passed:
-
dsaEncoding
<string> For DSA and ECDSA, this option specifies the format of the generated signature. It can be one of the following:'der'
(default): DER-encoded ASN.1 signature structure encoding(r, s)
.'ieee-p1363'
: Signature formatr || s
as proposed in IEEE-P1363.
-
padding
<integer> Optional padding value for RSA, one of the following:crypto.constants.RSA_PKCS1_PADDING
(default)crypto.constants.RSA_PKCS1_PSS_PADDING
RSA_PKCS1_PSS_PADDING
will use MGF1 with the same hash function used to sign the message as specified in section 3.1 of RFC 4055. -
saltLength
<integer> Salt length for when padding isRSA_PKCS1_PSS_PADDING
. The special valuecrypto.constants.RSA_PSS_SALTLEN_DIGEST
sets the salt length to the digest size,crypto.constants.RSA_PSS_SALTLEN_MAX_SIGN
(default) sets it to the maximum permissible value.
crypto.timingSafeEqual(a, b)
#
a
<Buffer> | <TypedArray> | <DataView>b
<Buffer> | <TypedArray> | <DataView>- Returns: <boolean>
This function is based on a constant-time algorithm.
Returns true if a
is equal to b
, without leaking timing information that
would allow an attacker to guess one of the values. This is suitable for
comparing HMAC digests or secret values like authentication cookies or
capability urls.
a
and b
must both be Buffer
s, TypedArray
s, or DataView
s, and they
must have the same length.
Use of crypto.timingSafeEqual
does not guarantee that the surrounding code
is timing-safe. Care should be taken to ensure that the surrounding code does
not introduce timing vulnerabilities.
crypto.verify(algorithm, data, key, signature)
#
algorithm
<string> | <null> | <undefined>data
<Buffer> | <TypedArray> | <DataView>key
<Object> | <string> | <Buffer> | <KeyObject>signature
<Buffer> | <TypedArray> | <DataView>- Returns: <boolean>
Verifies the given signature for data
using the given key and algorithm. If
algorithm
is null
or undefined
, then the algorithm is dependent upon the
key type (especially Ed25519 and Ed448).
If key
is not a KeyObject
, this function behaves as if key
had been
passed to crypto.createPublicKey()
. If it is an object, the following
additional properties can be passed:
-
dsaEncoding
<string> For DSA and ECDSA, this option specifies the format of the generated signature. It can be one of the following:'der'
(default): DER-encoded ASN.1 signature structure encoding(r, s)
.'ieee-p1363'
: Signature formatr || s
as proposed in IEEE-P1363.
-
padding
<integer> Optional padding value for RSA, one of the following:crypto.constants.RSA_PKCS1_PADDING
(default)crypto.constants.RSA_PKCS1_PSS_PADDING
RSA_PKCS1_PSS_PADDING
will use MGF1 with the same hash function used to sign the message as specified in section 3.1 of RFC 4055. -
saltLength
<integer> Salt length for when padding isRSA_PKCS1_PSS_PADDING
. The special valuecrypto.constants.RSA_PSS_SALTLEN_DIGEST
sets the salt length to the digest size,crypto.constants.RSA_PSS_SALTLEN_MAX_SIGN
(default) sets it to the maximum permissible value.
The signature
argument is the previously calculated signature for the data
.
Because public keys can be derived from private keys, a private key or a public
key may be passed for key
.
注意事项#
传统的 stream 接口(Node.js v0.10 之前)#
The Crypto module was added to Node.js before there was the concept of a
unified Stream API, and before there were Buffer
objects for handling
binary data. As such, the many of the crypto
defined classes have methods not
typically found on other Node.js classes that implement the streams
API (e.g. update()
, final()
, or digest()
). Also, many methods accepted
and returned 'latin1'
encoded strings by default rather than Buffer
s. This
default was changed after Node.js v0.8 to use Buffer
objects by default
instead.
ECDH 近期的变化#
Usage of ECDH
with non-dynamically generated key pairs has been simplified.
Now, ecdh.setPrivateKey()
can be called with a preselected private key
and the associated public point (key) will be computed and stored in the object.
This allows code to only store and provide the private part of the EC key pair.
ecdh.setPrivateKey()
now also validates that the private key is valid for
the selected curve.
The ecdh.setPublicKey()
method is now deprecated as its inclusion in the
API is not useful. Either a previously stored private key should be set, which
automatically generates the associated public key, or ecdh.generateKeys()
should be called. The main drawback of using ecdh.setPublicKey()
is that
it can be used to put the ECDH key pair into an inconsistent state.
弱加密算法的支持#
The crypto
module still supports some algorithms which are already
compromised and are not currently recommended for use. The API also allows
the use of ciphers and hashes with a small key size that are too weak for safe
use.
Users should take full responsibility for selecting the crypto algorithm and key size according to their security requirements.
Based on the recommendations of NIST SP 800-131A:
- MD5 and SHA-1 are no longer acceptable where collision resistance is required such as digital signatures.
- The key used with RSA, DSA, and DH algorithms is recommended to have at least 2048 bits and that of the curve of ECDSA and ECDH at least 224 bits, to be safe to use for several years.
- The DH groups of
modp1
,modp2
andmodp5
have a key size smaller than 2048 bits and are not recommended.
See the reference for other recommendations and details.
CCM 模式#
CCM is one of the supported AEAD algorithms. Applications which use this mode must adhere to certain restrictions when using the cipher API:
- The authentication tag length must be specified during cipher creation by
setting the
authTagLength
option and must be one of 4, 6, 8, 10, 12, 14 or 16 bytes. - The length of the initialization vector (nonce)
N
must be between 7 and 13 bytes (7 ≤ N ≤ 13
). - The length of the plaintext is limited to
2 ** (8 * (15 - N))
bytes. - When decrypting, the authentication tag must be set via
setAuthTag()
before callingupdate()
. Otherwise, decryption will fail andfinal()
will throw an error in compliance with section 2.6 of RFC 3610. - Using stream methods such as
write(data)
,end(data)
orpipe()
in CCM mode might fail as CCM cannot handle more than one chunk of data per instance. - When passing additional authenticated data (AAD), the length of the actual
message in bytes must be passed to
setAAD()
via theplaintextLength
option. Many crypto libraries include the authentication tag in the ciphertext, which means that they produce ciphertexts of the lengthplaintextLength + authTagLength
. Node.js does not include the authentication tag, so the ciphertext length is alwaysplaintextLength
. This is not necessary if no AAD is used. - As CCM processes the whole message at once,
update()
can only be called once. - Even though calling
update()
is sufficient to encrypt/decrypt the message, applications must callfinal()
to compute or verify the authentication tag.
const crypto = require('crypto');
const key = 'keykeykeykeykeykeykeykey';
const nonce = crypto.randomBytes(12);
const aad = Buffer.from('0123456789', 'hex');
const cipher = crypto.createCipheriv('aes-192-ccm', key, nonce, {
authTagLength: 16
});
const plaintext = 'Hello world';
cipher.setAAD(aad, {
plaintextLength: Buffer.byteLength(plaintext)
});
const ciphertext = cipher.update(plaintext, 'utf8');
cipher.final();
const tag = cipher.getAuthTag();
// Now transmit { ciphertext, nonce, tag }.
const decipher = crypto.createDecipheriv('aes-192-ccm', key, nonce, {
authTagLength: 16
});
decipher.setAuthTag(tag);
decipher.setAAD(aad, {
plaintextLength: ciphertext.length
});
const receivedPlaintext = decipher.update(ciphertext, null, 'utf8');
try {
decipher.final();
} catch (err) {
console.error('Authentication failed!');
return;
}
console.log(receivedPlaintext);
crypto 常量#
The following constants exported by crypto.constants
apply to various uses of
the crypto
, tls
, and https
modules and are generally specific to OpenSSL.
OpenSSL 选项#
Constant | Description |
---|---|
SSL_OP_ALL |
Applies multiple bug workarounds within OpenSSL. See https://www.openssl.org/docs/man1.0.2/ssl/SSL_CTX_set_options.html for detail. |
SSL_OP_ALLOW_NO_DHE_KEX |
Instructs OpenSSL to allow a non-[EC]DHE-based key exchange mode for TLS v1.3 |
SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION |
Allows legacy insecure renegotiation between OpenSSL and unpatched clients or servers. See https://www.openssl.org/docs/man1.0.2/ssl/SSL_CTX_set_options.html. |
SSL_OP_CIPHER_SERVER_PREFERENCE |
Attempts to use the server's preferences instead of the client's when selecting a cipher. Behavior depends on protocol version. See https://www.openssl.org/docs/man1.0.2/ssl/SSL_CTX_set_options.html. |
SSL_OP_CISCO_ANYCONNECT |
Instructs OpenSSL to use Cisco's "speshul" version of DTLS_BAD_VER. |
SSL_OP_COOKIE_EXCHANGE |
Instructs OpenSSL to turn on cookie exchange. |
SSL_OP_CRYPTOPRO_TLSEXT_BUG |
Instructs OpenSSL to add server-hello extension from an early version of the cryptopro draft. |
SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS |
Instructs OpenSSL to disable a SSL 3.0/TLS 1.0 vulnerability workaround added in OpenSSL 0.9.6d. |
SSL_OP_EPHEMERAL_RSA |
Instructs OpenSSL to always use the tmp_rsa key when performing RSA operations. |
SSL_OP_LEGACY_SERVER_CONNECT |
Allows initial connection to servers that do not support RI. |
SSL_OP_MICROSOFT_BIG_SSLV3_BUFFER |
|
SSL_OP_MICROSOFT_SESS_ID_BUG |
|
SSL_OP_MSIE_SSLV2_RSA_PADDING |
Instructs OpenSSL to disable the workaround for a man-in-the-middle protocol-version vulnerability in the SSL 2.0 server implementation. |
SSL_OP_NETSCAPE_CA_DN_BUG |
|
SSL_OP_NETSCAPE_CHALLENGE_BUG |
|
SSL_OP_NETSCAPE_DEMO_CIPHER_CHANGE_BUG |
|
SSL_OP_NETSCAPE_REUSE_CIPHER_CHANGE_BUG |
|
SSL_OP_NO_COMPRESSION |
Instructs OpenSSL to disable support for SSL/TLS compression. |
SSL_OP_NO_ENCRYPT_THEN_MAC |
Instructs OpenSSL to disable encrypt-then-MAC. |
SSL_OP_NO_QUERY_MTU |
|
SSL_OP_NO_RENEGOTIATION |
Instructs OpenSSL to disable renegotiation. |
SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION |
Instructs OpenSSL to always start a new session when performing renegotiation. |
SSL_OP_NO_SSLv2 |
Instructs OpenSSL to turn off SSL v2 |
SSL_OP_NO_SSLv3 |
Instructs OpenSSL to turn off SSL v3 |
SSL_OP_NO_TICKET |
Instructs OpenSSL to disable use of RFC4507bis tickets. |
SSL_OP_NO_TLSv1 |
Instructs OpenSSL to turn off TLS v1 |
SSL_OP_NO_TLSv1_1 |
Instructs OpenSSL to turn off TLS v1.1 |
SSL_OP_NO_TLSv1_2 |
Instructs OpenSSL to turn off TLS v1.2 |
SSL_OP_NO_TLSv1_3 |
Instructs OpenSSL to turn off TLS v1.3 |
SSL_OP_PKCS1_CHECK_1 |
|
SSL_OP_PKCS1_CHECK_2 |
|
SSL_OP_PRIORITIZE_CHACHA |
Instructs OpenSSL server to prioritize ChaCha20Poly1305
when client does.
This option has no effect if
SSL_OP_CIPHER_SERVER_PREFERENCE
is not enabled. |
SSL_OP_SINGLE_DH_USE |
Instructs OpenSSL to always create a new key when using temporary/ephemeral DH parameters. |
SSL_OP_SINGLE_ECDH_USE |
Instructs OpenSSL to always create a new key when using temporary/ephemeral ECDH parameters. |
SSL_OP_SSLEAY_080_CLIENT_DH_BUG |
|
SSL_OP_SSLREF2_REUSE_CERT_TYPE_BUG |
|
SSL_OP_TLS_BLOCK_PADDING_BUG |
|
SSL_OP_TLS_D5_BUG |
|
SSL_OP_TLS_ROLLBACK_BUG |
Instructs OpenSSL to disable version rollback attack detection. |
OpenSSL 引擎的常量#
Constant | Description |
---|---|
ENGINE_METHOD_RSA |
Limit engine usage to RSA |
ENGINE_METHOD_DSA |
Limit engine usage to DSA |
ENGINE_METHOD_DH |
Limit engine usage to DH |
ENGINE_METHOD_RAND |
Limit engine usage to RAND |
ENGINE_METHOD_EC |
Limit engine usage to EC |
ENGINE_METHOD_CIPHERS |
Limit engine usage to CIPHERS |
ENGINE_METHOD_DIGESTS |
Limit engine usage to DIGESTS |
ENGINE_METHOD_PKEY_METHS |
Limit engine usage to PKEY_METHDS |
ENGINE_METHOD_PKEY_ASN1_METHS |
Limit engine usage to PKEY_ASN1_METHS |
ENGINE_METHOD_ALL |
|
ENGINE_METHOD_NONE |
其他 OpenSSL 常量#
See the list of SSL OP Flags for details.
Constant | Description |
---|---|
DH_CHECK_P_NOT_SAFE_PRIME |
|
DH_CHECK_P_NOT_PRIME |
|
DH_UNABLE_TO_CHECK_GENERATOR |
|
DH_NOT_SUITABLE_GENERATOR |
|
ALPN_ENABLED |
|
RSA_PKCS1_PADDING |
|
RSA_SSLV23_PADDING |
|
RSA_NO_PADDING |
|
RSA_PKCS1_OAEP_PADDING |
|
RSA_X931_PADDING |
|
RSA_PKCS1_PSS_PADDING |
|
RSA_PSS_SALTLEN_DIGEST |
Sets the salt length for RSA_PKCS1_PSS_PADDING to the
digest size when signing or verifying. |
RSA_PSS_SALTLEN_MAX_SIGN |
Sets the salt length for RSA_PKCS1_PSS_PADDING to the
maximum permissible value when signing data. |
RSA_PSS_SALTLEN_AUTO |
Causes the salt length for RSA_PKCS1_PSS_PADDING to be
determined automatically when verifying a signature. |
POINT_CONVERSION_COMPRESSED |
|
POINT_CONVERSION_UNCOMPRESSED |
|
POINT_CONVERSION_HYBRID |
crypto 常量#
Constant | Description |
---|---|
defaultCoreCipherList |
Specifies the built-in default cipher list used by Node.js. |
defaultCipherList |
Specifies the active default cipher list used by the current Node.js process. |